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Abstract-The concept of almost sure sample stability and sample stability in probability are
formulated for elastic systems. Using a Koiter type approach these concepts are used in the
analysis of imperfection sensitive structures. The applied load and the initial geometric imper
fections are introduced into the analysis as random quantities. A compressed beam of finite
length on a nonlinear elastic foundation is used in an example calculation.

INTRODUCTION

Probabilistic methods are being used extensively in the modelling of many engineering
problems as it becomes apparent that this approach may yield a physically more meaningful
result. In the case of imperfection sensitive structures this is particularly true since both the
applied load and the initial imperfection are random quantities.

The existing literature dealing with the probabilistic features of imperfection sensitive
systems can be divided into two basic groups. The first group includes the work by Bolotin[l],
Thompson[2] and Roorda[3]. The characteristic of this group is the use of deterministic
critical load-initial imperfection relationships as transfer functions. Thus, given the
probabilistic description of the initial imperfection, the probabilistic description of the
critical load may be obtained. A restriction that results from this approach is that the initial
imperfection must be of a certain shape with a random amplitude, or.a summed series of
shapes with random amplitudes. In order to overcome this restriction and the difficulties
which are associated with the above approach, a second group of papers, published by
Amazigo[4], Fraser and B"udiansky[5], Amazigo et al.[6], van Slooten and Soong[7] and
Fersht[8], represent the initial imperfection as a random process. Then, making use of the
methods of stochastic differential equations, they obtain a relationship between the critical
load and the initial imperfection. The imposition of the assumption that the random process
is ergodic yields a deterministic critical load which, in the asymptotic case, depends only on
the spectral density of the imperfection.

The result that the critical load is deterministic is at first a surprise, as intuitively it seems
that a random imperfection should yield a random critical load. This paradox is, however,
due to the ergodicity assumption. That is, the critical load depends on certain integrals or
spatial averages of the initial imperfection and once the ergodicity assumption is made these
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averages automatically become equivalent to statistical moments. Thus, the critical load is
a deterministic quantity which depends only on these averages. In essence this approach
does not rely on defining the initial imperfection as a random variable; rather it makes use
of a different definition of a deterministic imperfection. That is, the imperfection is specified
by certain spatial averages, in this case the spectral density.

In both approaches to the problem the stability definitions used are either not well
defined or the implications of these definitions are not made clear. Thus, the first objective
of the present paper is the development of well defined stability criteria. These criteria will
then be combined with a Koiter style analysis to yield a general analysis for randomly
imperfect systems in which the applied load is a random variable and initial imperfection is
represented by a random process.

STABILITY CRITERIA

Probabilistic stability criteria may be derived from several different points of view. In
particular the concepts of almost sure stability, stability in probability, and moment stability
are in common use. The application of any of these definitions depends to a great extent
on the problem under consideration, the results desired, as well as the ease or possibility of
using a given definition. In applications to real systems, it has been suggested by Kosin[9] that
almost sure sample stability properties are desirable. The justification of this point of view
is due to two different features; firstly, almost sure sample stability properties yield a close
analogy with the corresponding deterministic stability properties and, secondly, samples
(not averages) represent actual events or observations. The significance of almost sure
sample stability is that it guarantees that almost every sample will satisfy the stability
requirement or, stated otherwise, every member of the ensemble except some with zero
probability will satisfy the stability requirement.

In the following discussion it is assumed that the initial imperfection is a smooth process.
A smooth process is one which with probability one possesses continuous sample derivatives.
This point of view leads to the concept of the random energy functional, which is a functional
of a random displacement, a random load and the random initial imperfection, all of which
are not independent. This functional can be viewed as a collection of deterministic energy
functionals upon which has been induced a probability measure by way of the initial imper
fection. This concept will lead to an almost sure sample stability criterion.

It is further assumed that any given load level for any member of the ensemble is attained
through the addition of arbitrarily small increments of load, all of the same sign. As a
preliminary to the discussion of the probabilistic stability criterion it is necessary to recall
some of the features of the deterministic stability criterion.

In the deterministic theory, an equilibrium position is defined to be a stable one when the
equilibrium configuration corresponds to a local minimum of the potential energy. An
unstable equilibrium configuration is defined to occur when it no longer represents a local
minimum. The necessary conditions for the stability of a conservative static system are

JV =0,

J2 V ~ 0,

and if in the last equation the sign of equality holds,

J3 V = 0,

J4 V ~ 0,

(la)

(lb)

(2a)

(2b)
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and if in the last equation the sign of equality holds,

b5V = 0,
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(3a)

(3b)

and so on, where V is the potential energy and bnV represents the nth variation of the
potential energy. Equation (la) represents the requirement that the system under considera
tion be in a state of equilibrium and the remaining equations yield the necessary conditions
for a proper local minimum of the potential energy.

From a purely mathematical point of view the above definition is entirely adequate;
however, when the stability of a real system is investigated certain other features must be
considered. Firstly, a real system cannot occupy unstable equilibrium states but will deform
until a stable state is found. Secondly, the stable states occupied after such a deformation
cannot be considered to be of practical usefulness since the system has passed through a
region of instability. Thus, it seems that a more practical and at the same time a more
precise stability definition would be the following: the system is stable when

(4)

where Pc, represents the critical load and P represents the applied load. Here Pc, is defined
to be the smallest load which places the system in an unstable critical state of equilibrium.
The requirement that the critical state be unstable is equivalent to assuming that a critical
load does in fact exist. That is, when equation (la) holds, the equality in equation (lb)
holds and any of the remaining equations are violated. It is noted in passing that Pc, is in
no way related to the applied load, rather it is a characteristic of the system under con
sideration.

Consider now the case of a restricted random potential energy functional which is defined
to be that combination of a random load, a random deflection and the random initial
imperfection such that almost every sample occupies its first unstable critical state of equi
librium. If this is not possible for a given sample, this sample is rejected. The random load
so defined is the critical load for the ensemble and the probabilistic measure associated with
this load is defined by some transformation of the probabilistic measure of the initial
imperfection. Thus, almost sure sample stability of the ensemble occurs when

Prob{Pc, > P} = 1 (5)

where Pc, represents the random critical load and P represents the random applied load.
If this equation is satisfied the implication is that the equilibrium configurations of almost
every sample are uniquely defined for all loads less than or equal to the applied load. As can
easily be appreciated this result is very powerful, and unfortunately, in some cases may
be too restrictive. For example, if the applied load or the initial imperfection has a proba
bility measure defined on the extended real axis, then it is impossible to satisfy equation (5).
In these cases it becomes necessary to consider a criterion which is based on a measure of
stability, or reliability. Thus, the second stability definition is that of sample stability in
probability or more simply, reliability. That is

where R is the reliability.

R = Prob{Pc, > P} (6)
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APPLICAnON OF THE STABILITY CRITERION

The method of analysis presented by Koiter[IO] is a very systematic and concise procedure
by which deterministic imperfection sensitive structures may be treated. In the probabilistic
case this method can be applied with equal ease.

It is convenient to hypothesise that the initial random imperfection represents the differ
ence between the actual samples, or members of the ensemble, and an idealized model. This
model represents the" perfect" form and is completely deterministic. As has been previously
noted, the point of view is taken that the restricted load, which yields the restricted energy
functional is the lowest random load which will place every sample in an unstable critical
state of equilibrium. Also, if it is not possible to place a given sample in such a state, this
sample is rejected. The random load so obtained is defined to be the critical load of the
ensemble. Based on the assumption imposed on the initial imperfection, the method employed
by Koiter is valid and may be applied to the restricted energy functional in order to obtain
a relationship between the ensemble critical load and the initial imperfection. Thus it is
sufficient to present the final restricted energy expression, that is,

(7)

This expression contains only the predominant terms from the energy and is thus a first
approximation. The variable' a' can be considered to be a deflection parameter and is the
only degree of freedom in the system, Al is the critical load of the model, l c is the critical
load of the imperfect system and is the quantity which is being evaluated. The terms
BI , Az', An are functionals which are characteristic of the system under consideration. The
terms A 2" An contain no influence from the initial imperfection and can be derived from
the model of the system. The term BI is linear in the imperfection. Only the linear term in
the imperfection is retained since, on account of the smallness of the imperfection, it will
have a predominant influence.

For equilibrium of the restricted system it is necessary that the first variation of the
energy be zero; therefore

(8)

Since the system is in a critical state of equilibrium the second variation is also equal to
zero, hence

(9)

Also, the definition of the critical load requires that the critical state be unstable; thus, for
n >2,

dnF(a)
--2- = n! An #- 0,

da
n = odd

(10)

< 0, n = even.
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The solution of equations (8) and (9) for Ac yields the required relationship for the critical
load in terms of the initial imperfection and various parameters of the system under con
sideration. The form of equations (9) and (10) also yield further information of interest.
Equation (9) represents the "stability boundary" for the imperfect system and it contains
no influence from the initial imperfection. Thus the stability boundary is given by a deter
ministic relationship which may be obtained from an analysis of the model. Equation (10)
determines the stability or instability of the critical state; this quantity is completely deter
ministic and can also be evaluated from an analysis of the model. This result is extremely
useful because it implies that the existence of the random critical load depends only on
certain characteristics of the model. A deterministic analysis of the model should therefore
always precede the probabilistic analysis of the real structure. In fact, the analysis of the
model determines whether or not the real structure is imperfection sensitive.

The two classes of structures which have been discussed at great length in the existing
"deterministic" literature on imperfection sensitivity are the so-called asymmetric (n = 3)
and symmetric (n = 4) cases. Many of the commonly used structural forms fall within one
of these two categories and will therefore be dealt with in some detail. The methods used,
however, could equally well be applied for higher values of n.

(I) Asymmetric caSe (n = 3, A 3 i= 0)

For the asymmetric case the equilibrium equation is

B1 + 2(Ac - Al)A2 'a + 3A 3 a2 = 0,

and the stability boundary is given by

2(Ac - Al)Az' + 6A 3 a = O.

Solving these equations for the lowest value of the ensemble critical load yields

A [3A B ]1/2c 1 3 1T = - A '2.1 2 •
1 2 1

(11)

(12)

(13)

This expression can be simplified by setting Ac = Ac/Al and yA. = (3A 3B1)/(A2'2 .1/), which
reduces equation (13) to

(14)

The quantity yA. will be called the imperfection parameter. It is a linear functional of the
initial imperfection which has been weighted by certain constants that are characteristics
of the system under consideration. It should be noted that yA. is defined for positive values
only because the system does not buckle if yA. is negative. Thus those samples which contain
imperfections that lead to negative values of yA. are rejected.

For the investigation of stability it is convenient to define the variable

(15)

where A is the random applied load divided by Ai' The quantity AR may be thought of as the
random reserve load. Substitution for Ac in equation (15) from equation (14) yields

(16)
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In order that an expression for the reliability can be obtained it becomes necessary to
assume that the joint density function of Aand YA' designated asf;.y)A, YA), can be obtained.
The implications of this assumption will be discussed in a later section.

Use of this density function allows computation of the joint density function of AR and
YA' The latter can be written as

(17)

Thus the reliability, as defined in equation (6), is

R = Prob(AR > 0)

(18)

In the above integrals the lower limits deserve special attention. The 0+ occurs because of
the inequality on AR and the 0 because YA is not defined for negative values.

(2) Symmetric case (n = 4, A 4 < 0)

The equilibrium equation for this case is given by

(19)

and the stability boundary by

(20)

Solving these equations for the lowest value of the critical load yields

(21)

In order to simplify let Ys = [(27A4)/(8Az'3 A/)]1/ZR1.
Using the previous definition for Ac then yields

(22)

The quantity Ys will be called the imperfection parameter which, like YA' is a linear func
tional of the initial imperfection.

Substitution for Ac in equation (15) from equation (22) yields

(23)

Assuming that the joint density function of A and Ys' i.e. f;.y.(A, y.), can be obtained it
follows readily that the joint density function of AR and Ys is

(24)
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The reliability for the symmetric case, using equation (6) is therefore

347

In the above integrals it is noted that the range of integration for Ys extends from - 00 to
00 because Ac is defined for all values of YS'

GAUSSIAN INPUTS

Before continuing it is necessary to discuss the implications of equations (18) and (25).
These expressions are completely general (within the assumptions of smallness imposed on
the initial imperfection) and are valid for all possible joint density functions of A and YA
(or Ys). Thus the immediate difficulty is the generation of fAY)',,) andfAys(., .).

It can be stated that the imperfection parameters YA and Ys are random variables which
are specified by a linear functional relationship with the initial imperfection. This functional,
B l , is in general a multiple integral which extends over the dimensions of the structure under
consideration. The initial imperfection is a random process spanning the same dimensions.
The utilization of integrals of this form for random processes is justified in the present
context from the point of view of sample function integrability which is assured by the
assumption that the initial imperfection is a smooth process.

The applied load, on the other hand, involves no spatial integral, being merely a random
variable.

It follows, theoretically, that the input to the problem should be an infinite set of joint
density functions of the applied load and the initial imperfection process. If such informa
tion is available, or can be obtained, then the immediate difficulty is the calculation of the
joint density function of the applied load and the imperfection parameter.

For arbitrary joint density functions of the applied load and the initial imperfection it is,
as a rule, impossible to obtain an analytic expression for the density function of the imper
fection parameter. Exceptions to this rule occur; (i) when the applied load and the initial
imperfection are jointly Gaussian, or (ii) when the applied load and the initial imperfection
are independent with the initial imperfection being a Gaussian process. The simplification
in these cases arises because of the linear relationship between the imperfection parameter
and the initial imperfection process with the result that the marginal density function of the
imperfection parameter is Gaussian.

The second case is of considerable interest in that it allows an arbitrary density function
for the applied load. The independence of the applied load and the initial imperfection may
be justified from the point of view that initial imperfections are a result of the manufacture
of the structural system, whereas the load is applied only after the manufacturing process
is complete and is independent of the manufacturing process. This argument, of course,
precludes possible loading eccentricities which would induce a dependence between ,the
applied load and the initial imperfection.

In the following work it is assumed; (i) that the applied loaq and the initial imperfection
are independent, (ii) that the applied load is a Gaussian random variable, and (iii) that the
initial imperfection is a Gaussian random process. Perry[ll] has shown by an extensive
process of accurate measurements that for certain simple structures the initial imperfections
are distributed as Gaussian variables. It is therefore felt that the Gaussian assumption may
yield physically reasonable results.
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(1) Asymmetric case

On the basis of the above assumptions it follows that the imperfection parameter, Y J'A

is completely specified by its mean

(26)

and its standard deviation

(27)

Thus the joint density function of applied load, A, and YA is

1 1 [-(A - A:)l] [(YA - YA)2]
1.,.(1, y ,) ~ t[1_erf(.:j'2)] 2..., exp 2a' exp - 2.,' (28)

where A: and u are the mean and standard deviation, respectively, of the applied load.
The constant H[l - erf( - YA/UAJ2)]} -1 is introduced as a normalization factor because no
critical loads exist for negative value of YA' It follows immediately from equation (18)
that the reliability is

(29)

Integrating with respect to ,1,R yields the result

R =! _ 1 {'){exp [ _ (YA
2
- ~A)2]erf( -1 +)~2 + A:)} dYA'

2 [1 _erf(U~J~) ]J 2n UA 0 UA U (30)

This result is valid for all systems whose imperfection sensitivity is represented by equation
(14).

It should be noted that the parameter R in the asymmetric case represents only the reli
ability of the members of the ensemble which are capable of buckling. Thus in the cases
considered, if the proportion of samples rejected becomes very large, the results obtained
may be misleading. The reliability, against buckling, of the entire ensemble may readily be
calculated from the relationship

(31)

in which RT is the reliability of the entire ensemble. A graphical insight into the relationship
between reliability RT, and the inputs A:, u, YA and UA can be obtained from Figs. 1-3.



On a probabilistic stability theory for imperfection sensitive structures 349

020 0·25 030

09

0·6~_--''--_---'_~--L_----'='",,"-,-__----.L__-J

00 005 010 015
eTA

07

10r-=:::::-==~=~~=~:::::------r

-0·/5

0-9

RT

08

\>:; 05
1<7=01

07

0-6
0;;-'";;;:0-~~-~;;-------:0;-'J~5--7~--""~--=0--:'30

C7"A

Fig. 1. Asymmetric system: Influence of the inputs~, (j, YA and (jA on RT •
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(2) Symmetric case

In the symmetric case the mean and standard deviations of the imperfection parameter
are

(32)

and
_( 27A4 )1/2 2 _ 2 112

(Js - S(A
2

')3A
1

3 [E{B1 } E {B1n ,
respectively. The joint density function of Aand Ys is

1 [(A - AfJ [(Ys - Jis)2]
f).y.(A, Ys) = 2n(J (Js exp - 2(J2 exp - 2(Js2 •

(33)

(34)

(35)

It should be noted that no normalization constant is required in the present case because
Ac is defined for all real value of Ys' It follows immediately that the reliability is

R -J'18 foo _1_ [_ (Ys - Jis)2] [(AR - 1 +y/13 + Ji)2] d d'- exp 2 exp 2 Ys Jl.R·
0+ - 00 2n(J (Js 2(Js 2(J

(36)

Integration with respect to AR yields the result

_ 1 foo 1 [(Ys - Jis)2] f( -1 + y/13 + 1) d
R - - - J exp - 2 er J Ys' .

2 - co 2(Js 2n 2(Js (J 2

This result is valid for all systems in which the imperfection sensitivity reduces to the form
given in equation (22). Some results are shown in Figs. 4-6.
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DISCUSSION OF RESULTS

Some interesting features appear in the results shown in Figs. 2 and 5. The first point of
interest lies in the convergence to the same point on the vertical axis of curves for different
reliabilities but the same deterministic applied load. The second point of interest is the
complete linearity of the curves in Fig. 2 and the partial linearity of curves in Fig. 5 (for
large values of y./(1.).

A further reduction of equations (31) and (36) will shed some light on these features.
An evaluation of R for (1 = 0, using equation (30) and substitution of R into equation (31)
yields, after some algebra, the following simplified expression for RT .

(37)

This equation can be transformed to

which demonstrates the linear correspondence between YA and (1A •

A similar reduction of equation (36) yields

(
(1 - A)3/2 + Ys) (1 - A)3/2 - Y.)

R = ! erf ~ + ! erf ! '2(1. v2(1.
0:5,; A:5,; 1,

(38)

(39)
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for the symmetric case. If the ratio ys/as is large (say> 3) equation (39) can be transformed
to the form

Ys = (1 - A)3/2-/2 [erf- 1(2R - l)]as'

or if - y./a. is large (>3) to the form

Ys = -(1 - A)3/2 + /2 [erf- 1(2R - l)]as'

(40a)

(40b)

Equations (38) and (40) show that the slope of the corresponding curves in Figs. 2 and 5
depend only on the value of reliability and that the slope in the asymmetric case is equal to
that in the symmetric case (for large values of y./as) for a given value of reliability. In both
cases the intercept with the vertical axis (aA = 0 or as = 0) is independent of the reliability.
This is of course to be expected since the whole system reverts back to being completely
deterministic.

The above results also embrace the results of [3] as a special case. The equivalence arises if
the initial imperfection is assumed' to be a deterministic shape with a random amplitude. A
stability definition of the form of equation (6) is also inherent in the development of the
results in [3].

EXAMPLE: BEAM ON ELASTIC FOUNDATION

Consider the problem of a beam resting on a non-linear elastic foundation a shown in
Fig. 7. The model is a deterministic system which exhibits idealized behaviour. This model,
subjected to load L, is used to determine the ideal buckling load and buckling shape.
The restricted system is a random system and its geometry represents the real geometry.
The load applied to the restricted system is the random critical load. This load is chosen
such that almost every sample is in an unstable critical state of equilibrium. The real system
is the random system under consideration. In Fig. 7(c) w(x) represents the deflection,
wo(x) the initial imperfection and L the random applied load.

Yh-------- .C(x).._.. __

~~L
(0 )

YG. .(.(x)+wo(x~

~~Lc
(b) 0 -

k--.~, L

(c)

Fig. 7. Beam on nonlinear elastic foundation. (a) The model. (b) The restricted system. (c) The
real system.
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(1) The potential energy of the model

The total potential energy for the model is given by:

In the above, V represents the strain energy of the system, W the work done by the applied
load L, E the Young's modulus, I the moment of inertia of a cross-section of the beam,
I the length of the beam, and q(w) the force per unit deflection of the elastic foundation.
In this expression it is assumed that the beam is axially rigid. Thus the first term represents
the strain energy due to bending, the second represents the work done by the applied load
and the third the strain energy absorbed by the elastic foundation. Consider now the non
dimensionalization:

x W L/2 q(w) 2
e = - , 'P = -, A =-, q('P) = - I

I I EI EI'
and (42)

Then equation (41) becomes

1 ('P")2 1 1[ 'I' ]
PA['P] = I (' 2 de + 2A I HI - ('P')2]1/2 -I} de + 21 I q('P) d'P de,

ol-'P) 0 00

where

(43)

and

The parameters K 1 , K2 and K 3 are the linear, quadratic and cubic foundation constants,
respectively.

Expanding the integrand in series, and retaining only those terms up to and including
the fourth degree in 'P and its derivatives, yields

P 1A['P] = 0,
1

p/['P] =f [('P'Y - A('P')2 + K 1'P
2] de,

o

1
1 'P3 (44)

p/['P] = 0 2KrT de,

p/['P] =([('P"'P'f + K 3 ~4 _ A(:')4] de,

where p/['P] represents that term which is of the ith degree in 'P and its derivatives in the
potential energy.

(2) The buckling load of the model

The buckling load of the model is given by the smallest eigenvalue of the linearized
problem. This is obtained by setting the first variation of the quadratic terms, p/['P], to
zero. Doing so, yields

1

50 ['P" <5'P" - A'P' <5'P' + K1'P <5'P] de = o. (45)
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Integration by parts and making use of the arbitrariness of b'P' yields

355

and the equilibrium equation

'P" = ° at ~ =0, I, (46)

'PIV + A'P" + KI'P = 0.

The forced boundary conditions are

(47)

'P = ° at ~ = 0, l. (48)

Equation (47) and the corresponding boundary conditions yield an eigenvalue problem,
the eigenfunction of which is

and the eigenvalue

'P I = sin mn~, (49)

(50)

The value of m is such that Al is a minimum and m is determined from the inequality [12],

(51)

(52)

(3) Stability of the buckling state

The stability of the buckling state (A = AI' 'P = 'PI) is determined by the character of
third and higher order terms in the potential energy expansion. Thus

fl 3 8K2 1 m
A 3 =P3('P1)= tK2'P 1 d~=--(l-(-l)).

o 9mn 2

Therefore if A 3 #= °the system is unstable in the bifurcation state and, as a result, is im
perfection sensitive. This system would be designated as an asymmetric system. If A 3 = 0,
it is necessary to investigate the fourth order terms. Thus

A - P ('P ) _fl [('P ''P ")2 lK 'P 4 lA ('P ')4] d.l' _ (mn)6 3(mn)2 K 3K3
4-41-

0
1 I +Z3 1-41 I "---n-32 1+16'

(53)

In equations (52) and (53), Pn('P) represents the coefficient of the first term in the Taylor
series expansion of PnJ.('P) about the point A= AI.

(4) The restricted system

Consider now the random potential energy expression of the restricted system. For this
system, an expression similar to that of the model (equation (44)) is obtained, the difference
being due to the additional presence of terms dependent on the initial imperfection, and a
replacement of L by L c . Using the previous dimensionless quantities with the new ones

Wo
'Po =T' A = Lel

2

c EI' (54)
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(56)

(58)

yields the restricted potential energy functional

1 [ HJ" + lTl " lTl " ] 2 1
plc['P] Q"c['P] -f I T 0 T 0 f" 2 1/2+ - 0.J 1('P' + 'P0')2 - .J(l - ('P0')2 de + lAc 0{[l - ('P + 'Po ) ]

- (1 - ('PO')2]1 /2} de + 2( U: [q('P + 'Po) -q('Po)] d'P} de, (55)

where p"c['P] represents those terms independent of 'P0' and Q"c['P] represents those terms
containing 'P0 •

Expanding the potential energy expression in series and retaining only the predominant
terms yields

p/c['P] = 0,
1

p/c['P] =50 [('P")2 - AA'P')2 + K1 'P2] de,

1

p/c('P] = f
o

(tK2 'P 3
] de,

1

p/c['P] =50 [('P"'P')2 + !K3 'P4 - iAc('P')4J de,

1

Q/c['P] = -2Acf ['Po''P'] de,
o

where p/c('PJ is as previously defined and Q/c('P] represents those terms linear in 'Po
and of 1st degree in 'P.

Further expansion of the potential energy, this time with respect to the load parameter,
about Ac = Al yields

1 1

plc['P] + Q/c['P] = f
o

[('P")2 - A1('P')2 +K1'P
2

] de + f
o

[tK2'P3] de +

1 1 1

50 [{'P"'P')2 + tK3'P4
- 1,1.1{'P')4J de 2Al fa ['Po''P'] de + fa (AI - Ac)('P')2 de. (57)

It should be noted that in equation (57) only the predominant term in (AI - Ac) has been
retained.

(5) The asymmetric case (K2 ¥- °and m is odd)

In the asymmetric case the important system constants in equation (11) are

1

B1 = Ql['Ptl = -2(mn)A1 f 'Po' cos mne de,
o

Az' P2'('P1] = - ( ('P1')2 de = _ (m;)
2

,

f1 3 8K2A3 =P3['Ptl = tK2'P1 de = --.
o 9(mn)

In the above Ql('Ptl is the coefficient of the first term in the Taylor expansion of Ql"c ['P]
about Ac = AI, P2'['Ptl is the coefficient of the second term in the expansion of p/c('P]
about Ac = A1 and so on. B1 can be simplified through integration by parts. Using the
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condition that '1'0 = 0 at 0 and 1 in order that the initial imperfection be consistent with
the boundary conditions, one obtains

1

B1 = -2(mn)2A1 I '1'0 sin mn~ d~.
o

(59)

The density function of the imperfection parameter requires the definition of the mean .vA
and the standard deviation (JA. These quantities are defined except for the expectations E[Bd
and E[B1

2
]. Taking the expected value of equation (59) yields

1

E[Bd = - 2(mn)2A1f E['I'o]sin mn~ d~. (60)
o

It is readily seen that

1

b(m) = 2I E['Po]sin mn~ d~,
o

is the mth Fourier sine coefficient of E['P0].
Therefore

(61)

(62)

Squaring both sides of equation (59) and then taking the expected value of the result yields

E[B1
2] = 4(mn)4A/E { [s: '1'0 sin mn~ d~r},

= 4(mn)4A1
2
E { [s: 'Po(~l)sin mn~l d~l] [s: 'I'0(~2)sin mn~2 d~2] }, (63)

1 1

= 4(mn)4A/I0 I
o

E['P0(~1)'P0(~2)]sin mn~l sin mne2 d~l d~2 .

The term E['PO(~1)'PO(~2)] represents the autocorrelation of '1'0. Also

1 1

SCm, m) = 4f f E['P0(~1)'P0(~2)]sin mn~l sin mn~2 d~l d~2'
o 0

(64)

is the coefficient of the (m, m)th term of the fourier sine series of the autocorrelation and can
thus be considered as the generalized spectral density of '1'0 evaluated at the frequencies
which correspond to the (m, m)th modes. Therefore

E[B/] = (mn)4A/S(m, m). (65)

Using the above, the expected value and standard deviation of the imperfection parameter
are, respectively,

_ 32K2b(m)
YA = - (3mn)5 + 3(mn)K1'

321 K2 1 2 1/2
(JA = (3mn)5 + 3(mn)K

1
[SCm, m) - b (m)] .

(66)

(67)



358 J. S. HANSEN and J. ROORDA

Referring now to Figs. 1-3 the influence of the various parameters on the reliability of the
system can be determined.

(6) The symmetric case (K2 = 0 and/or m is even)

In the symmetric case the system constants are similar to those of equation (58) except
that A 3 vanishes and

A = P ['P J= (mn)6 _ 3(mn)2K1 3K3 •

4 4 1 32 32 + 16

It immediately follows from equations (32) and (33), respectively, that

___ {27[(mn)6 - 3(mn)2K1 + 6K3J}1/2
Ys - -32[(mn)4 + Kd b(m),

and

(68)

(69)

(70)(J = {27[(mn)6 - 3(mn)2K1+ 6K3J}1/2 [S( ) _ b2( )]1/2
s -32[(mn)4 + Kd m, m m.

As in the asymmetric case these quantities can be superimposed on the appropriate axes
in Figs. 4-6 to determine the influence of varying the different parameters.

SUMMARY AND CONCLUSIONS

It is shown in this paper that useful probabilistic stability criteria can be formulated on the
basis of two fundamental concepts. These are; (i) almost sure sample stability, and (ii)
sample stability in probability (i.e. reliability). The latter concept is used to study the stability
problem of imperfection sensitive systems in which both the initial imperfections and the
applied loads are random quantities. Use of Koiter's method and restriction of the analysis
to only the first order approximation yields certain general results that are applicable to a
wide class of elastic systems. These results may be summarized as follows:

(1) The stability boundary, and the stability coefficient of an imperfect structural system
are independent of the initial imperfection. They are inherent characteristics of the perfect
model (or ideal system) and can be obtained from a deterministic analysis. A deterministic
study of the model should always precede a probabilistic study of the real structure.

(2) If the applied load is assumed to be a Gaussian random variable, and the initial
imperfection a Gaussian process, and if these two variables are independent, then the re
liability of the imperfect system can be found in terms of the mean and autocorrelation of
the geometric imperfections and the mean and standard deviation of the applied load.

(3) Both the mean and the autocorrelation of the initial imperfections of the structure play
an important role in a probabilistic stability analysis. For the example of a randomly
imperfect beam and a nonlinear elastic foundation some of these ideas can be further
developed.

(4) The Fourier sine coefficient of the mean initial imperfection that corresponds to the
buckling mode of the structure is of prime importance. It bears a linear relationship to the
mean imperfection parameter which is used in the analysis.

(5) The generalized spectral density of the initial imperfections, evaluated at the buckling
mode frequencies, is of equal importance. It is linearly related to the mean square of the
imperfection parameter.
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The stability criteria and the analysis presented in this paper can also be used in elastic
plate and shell stability problems, provided a suitable joint density function of the type
appearing in equation (I8) or (25) can be found.

REFERENCES

1. V. V. Bolotin, Statistical Methods in the Nonlinear Theory ofElastic Shells. NASA TT F-85 (1962).
2. J. M. T. Thompson, Towards a general statistical theory of imperfection-sensitivity in elastic post

buckling. J. Mech. Phys. Solids 15,413--417 (1967).
3. J. Roorda, Some statistical aspects of the buckling of imperfection sensitive structures. J. Mech. Phys.

Solids 17,111-123 (1969).
4. J. C. Amazigo, Buckling under axial compression of long cylindrical shells with random axisymmetric

imperfections. Q. appl. Math. 26, 537-566 (1969).
5. W. B. Fraser and B. Budiansky, The buckling of a column with random initial deflections. J. appl. Mech.

36, 233-240 (1969).
6. J. C. Amazigo, B. Budiansky and G. F. Carrier, Asymptotic analysis of the buckling of imperfect

columns on nonlinear elastic fOl,1ndations. Int. J. Solids Struct. 6, 1341-1356 (1970).
7. R. A. Van Slooten and T. T. Soong, Buckling of a long, axially compressed, thin cylindrical shell with

random initial imperfections. J. appl. Mech. 39,1066-1071 (1972).
8. R. S. Fersht, Almost Sure Stability of Long Cylindrical Shells with Random Imperfections. NASA

CR-1I61 (1968).
9. F. Kosin, A survey of stability of stochastic systems. Automatica, 5, 95-112 (1969).

10. W. T. Koiter, On the Stability of Elastic Equilibrium, Dissertation, Delft, Holland (1945). English
translations (i) NASA TT-FIO, 833, March (1967) and (ii) AFFDL-TR-70-25, February (1970).

11. S. H. Perry, Statistical Variation of Buckling Strength. Ph.D. Dissertation, University of London,
London, England (1966).

12. J. G. Lekkerkerker, On the stability of an elastically supported beam subjected to its smallest buckling
load. Proc. K. ned. Akad. Wet. 65B, 2 (1962).

Pe310Me - IloHJlTHe 0 6e3011IH6o'lHOH cTa6HJIbHOCTH 06pa3I.\a H B03MO)l(HOH cTa6HJIbHOCTH
o6paJI.\a «}JOPMYJIHpyeTcJl ~JIJI :maCTH'IHbIX CHCTeM. IlpHMeHJIJI annpOKCHMaI.\HIO KOHTepa 3TH
nOHJlTHJI HCnOJIb3YlOTCJl npH aHaJIH3e ~e«}JeKTHbIX '1YBcTBHTeJIbHbIX CTpyKTyp. IlpHJIO)l(eHHYIO
Harpy3Ky H Ha'laJIbHble reOMeTpH'leCKHe ~e<jleKTbI BBO~JlTCJI B aHaJIH3 KaK npOH3BOJIbHble
BeJIH'lHHbI. C)I(aTaJi 6aJIKa «}JHHHTHOH ~JIHHbI Ha HeJIHHeHHOM 3JIaCTH'IHOM «}Jy~aMeHTe

npHMeHJleTCJI B npHMepHoM BbI'IHCJIeHHH.


